Skip to main content
Log in

Dimethyl Fumarate or Teriflunomide for Relapsing–Remitting Multiple Sclerosis: A Meta-analysis of Post-marketing Studies

  • Original Article
  • Published:
Neurotherapeutics

Abstract

In the absence of head-to-head comparison trials, we aimed to compare the effectiveness of two largely prescribed oral platform disease-modifying treatments for relapsing–remitting multiple sclerosis, namely, dimethyl fumarate (DMF) and teriflunomide (TRF). We searched scientific databases to identify real-world studies reporting a direct comparison of DMF versus TRF. We fitted inverse-variance weighted meta-analyses with random effects models to estimate the risk ratio (RR) of relapse, confirmed disability worsening (CDW), and treatment discontinuation. Quantitative synthesis was accomplished on 14 articles yielding 11,889 and 8133 patients treated with DMF and TRF, respectively, with a follow-up ranging from 1 to 2.8 years. DMF was slightly more effective than TRF in reducing the short-term relapse risk (RR = 0.92, p = 0.01). Meta-regression analyses showed that such between-arm difference tends to fade in studies including younger patients and a higher proportion of treatment-naïve subjects. There was no difference between DMF and TRF on the short-term risk of CDW (RR = 0.99, p = 0.69). The risk of treatment discontinuation was similar across the two oral drugs (RR = 1.02, p = 0.63), but it became slightly higher with DMF than with TRF (RR = 1.07, p = 0.007) after removing one study with a potential publication bias that altered the final pooled result, as also confirmed by a leave-one-out sensitivity analysis. Discontinuation due to side effects and adverse events was reported more frequently with DMF than with TRF. Our findings suggest that DMF is associated with a lower risk of relapses than TRF, with more nuanced differences in younger naïve patients. On the other hand, TRF is associated with a lower risk of treatment discontinuation for side effects and adverse events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available as an Excel spreadsheet (Appendix.xlsx).

References

  1. Rotstein D, Montalban X. Reaching an evidence-based prognosis for personalized treatment of multiple sclerosis. Nat Rev Neurol. 2019;15:287–300. https://doi.org/10.1038/s41582-019-0170-8.

    Article  PubMed  Google Scholar 

  2. Tur C, Kalincik T, Oh J, et al. Head-to-head drug comparisons in multiple sclerosis: urgent action needed. Neurology. 2019;93:793–809. https://doi.org/10.1212/WNL.0000000000008319.

    Article  PubMed  Google Scholar 

  3. Mikol DD, Barkhof F, Chang P, et al. Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs glatiramer acetate in relapsing MS disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol. 2008;7:903–14. https://doi.org/10.1016/S1474-4422(08)70200-X.

    Article  CAS  PubMed  Google Scholar 

  4. Cadavid D, Wolansky LJ, Skurnick J, et al. Efficacy of treatment of MS with IFN -1b or glatiramer acetate by monthly brain MRI in the BECOME study. Neurology. 2009;72:1976–83. https://doi.org/10.1212/01.wnl.0000345970.73354.17.

    Article  CAS  PubMed  Google Scholar 

  5. O’Connor P, Filippi M, Arnason B, et al. 250 μg or 500 μg interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study. Lancet Neurol. 2009;8:889–97. https://doi.org/10.1016/S1474-4422(09)70226-1.

    Article  CAS  PubMed  Google Scholar 

  6. Rudick RA, Confavreux C, Lublin FD, et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med. 2006;13.

  7. Cohen JA, Barkhof F, Comi G, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362:402–15. https://doi.org/10.1056/NEJMoa0907839.

    Article  CAS  PubMed  Google Scholar 

  8. Cohen JA, Coles AJ, Arnold DL, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012;380:10.

    Article  Google Scholar 

  9. Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012;380:11.

    Article  Google Scholar 

  10. Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;14.

  11. Svenningsson A, Frisell T, Burman J, et al. (2022) Safety and efficacy of rituximab versus dimethyl fumarate in patients with relapsing-remitting multiple sclerosis or clinically isolated syndrome in Sweden: a rater-blinded, phase 3, randomised controlled trial. Lancet Neurol. 2022;21(8):693–703. https://doi.org/10.1016/S1474-4422(22)00209-5. PMID: 35841908.

    Article  CAS  PubMed  Google Scholar 

  12. Hauser SL, Bar-Or A, Cohen JA, et al. Ofatumumab versus teriflunomide in multiple sclerosis. N Engl J Med. 2020;383:546–57. https://doi.org/10.1056/NEJMoa1917246.

    Article  CAS  PubMed  Google Scholar 

  13. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535. https://doi.org/10.1136/bmj.b2535.

  14. O’Sullivan D, Wilk S, Michalowski W, Farion K. Using PICO to align medical evidence with MDs decision making models. Stud Health Technol Inform. 2013;192:1057.

    PubMed  Google Scholar 

  15. Metelli S, Chaimani A. Challenges in meta-analyses with observational studies. Evid Based Ment Health. 2020;23:83–7. https://doi.org/10.1136/ebmental-2019-300129.

    Article  PubMed  Google Scholar 

  16. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25:603–5. https://doi.org/10.1007/s10654-010-9491-z.

    Article  PubMed  Google Scholar 

  17. VanderWeele TJ. Optimal approximate conversions of odds ratios and hazard ratios to risk ratios. Biometrics. 2020;76:746–52. https://doi.org/10.1111/biom.13197.

    Article  PubMed  Google Scholar 

  18. Boster A, Nicholas J, Wu N, et al. Comparative effectiveness research of disease-modifying therapies for the management of multiple sclerosis: analysis of a large health insurance claims database. Neurol Ther. 2017;6:91–102. https://doi.org/10.1007/s40120-017-0064-x.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Braune S, Grimm S, van Hövell P, NTD Study Group, et al. Comparative effectiveness of delayed-release dimethyl fumarate versus interferon, glatiramer acetate, teriflunomide, or fingolimod: results from the German NeuroTransData registry. J Neurol. 2018;265:2980–92. https://doi.org/10.1007/s00415-018-9083-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Condé S, Moisset X, Pereira B, et al. Dimethyl fumarate and teriflunomide for multiple sclerosis in a real-life setting: a French retrospective cohort study. Eur J Neurol. 2019;26:460–7. https://doi.org/10.1111/ene.13839.

    Article  PubMed  Google Scholar 

  21. D’Amico E, Zanghì A, Sciandra M, et al. Dimethyl fumarate vs teriflunomide: an Italian time-to-event data analysis. J Neurol. 2020;267:3008–20. https://doi.org/10.1007/s00415-020-09959-1.

    Article  CAS  PubMed  Google Scholar 

  22. Buron MD, Chalmer TA, Sellebjerg F, et al. Comparative effectiveness of teriflunomide and dimethyl fumarate: a nationwide cohort study. Neurology. 2019;92:e1811–20. https://doi.org/10.1212/WNL.0000000000007314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guger M, Enzinger C, the Austrian MS Treatment Registry (AMSTR), et al. Oral therapies for treatment of relapsing–remitting multiple sclerosis in Austria: a 2-year comparison using an inverse probability weighting method. J Neurol. 2020;267:2090–100. https://doi.org/10.1007/s00415-020-09811-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hillert J, Tsai JA, Nouhi M, et al. A comparative study of teriflunomide and dimethyl fumarate within the Swedish MS Registry. Mult Scler. 2022;28:237–46. https://doi.org/10.1177/13524585211019649.

    Article  CAS  PubMed  Google Scholar 

  25. Kalincik T, Kubala Havrdova E, Horakova D, et al. Comparison of fingolimod, dimethyl fumarate and teriflunomide for multiple sclerosis. J Neurol Neurosurg Psychiatry. 2019;90:458–68. https://doi.org/10.1136/jnnp-2018-319831.

    Article  PubMed  Google Scholar 

  26. Laplaud D-A, Casey R, Barbin L, et al. Comparative effectiveness of teriflunomide vs dimethyl fumarate in multiple sclerosis. Neurology. 2019;93:e635–46. https://doi.org/10.1212/WNL.0000000000007938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nehzat N, Mirmosayyeb O, Barzegar M, et al. Comparable efficacy and safety of teriflunomide versus dimethyl fumarate for the treatment of relapsing-remitting multiple sclerosis. Neurol Res Int. 2021;2021:1–8. https://doi.org/10.1155/2021/6679197.

    Article  Google Scholar 

  28. Ontaneda D, Nicholas J, Carraro M, et al. Comparative effectiveness of dimethyl fumarate versus fingolimod and teriflunomide among MS patients switching from first-generation platform therapies in the US. Mult Scler Relat Disord. 2019;27:101–11. https://doi.org/10.1016/j.msard.2018.09.038.

    Article  PubMed  Google Scholar 

  29. Prosperini L, Cortese A, Lucchini M, et al. Exit strategies for “needle fatigue” in multiple sclerosis: a propensity score-matched comparison study. J Neurol. 2020;267:694–702. https://doi.org/10.1007/s00415-019-09625-1.

    Article  CAS  PubMed  Google Scholar 

  30. Vermersch P, Suchet L, Colamarino R, et al. An analysis of first-line disease-modifying therapies in patients with relapsing-remitting multiple sclerosis using the French nationwide health claims database from 2014–2017. Mult Scler Relat Disord. 2020;46:10251. https://doi.org/10.1016/j.msard.2020.102521.

    Article  Google Scholar 

  31. Zivadinov R, Kresa-Reahl K, Weinstock-Guttman B, et al. Comparative effectiveness of teriflunomide and dimethyl fumarate in patients with relapsing forms of MS in the retrospective real-world Teri-RADAR study. J Comp Eff Res. 2019;8:305–16. https://doi.org/10.2217/cer-2018-0135.

    Article  PubMed  Google Scholar 

  32. Montalban X. Review of methodological issues of clinical trials in multiple sclerosis. J Neurol Sci. 2011;311(Suppl 1):S35-42. https://doi.org/10.1016/S0022-510X(11)70007-7.

    Article  PubMed  Google Scholar 

  33. Bucello S, Annovazzi P, Ragonese P, et al. Real world experience with teriflunomide in multiple sclerosis: the TER-Italy study. J Neurol. 2021;268:2922–32. https://doi.org/10.1007/s00415-021-10455-3.

    Article  CAS  PubMed  Google Scholar 

  34. Kalincik T, Manouchehrinia A, Sobisek L, et al. Towards personalized therapy for multiple sclerosis: prediction of individual treatment response. Brain. 2017;140:2426–43. https://doi.org/10.1093/brain/awx185.

    Article  PubMed  Google Scholar 

  35. Fox EJ, Vasquez A, Grainger W, et al. Gastrointestinal tolerability of delayed-release dimethyl fumarate in a multicenter, open-label study of patients with relapsing forms of multiple sclerosis (MANAGE). Int J MS Care. 2016;18:9–18. https://doi.org/10.7224/1537-2073.2014-101.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Naismith RT, Wundes A, Ziemssen T, et al. Diroximel fumarate demonstrates an improved gastrointestinal tolerability profile compared with dimethyl fumarate in patients with relapsing-remitting multiple sclerosis: results from the randomized, double-blind, phase III EVOLVE-MS-2 study. CNS Drugs. 2020;34:185–96. https://doi.org/10.1007/s40263-020-00700-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Anglemyer A, Horvath HT, Bero L. Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials. Cochrane Database Syst Rev. 2014. https://doi.org/10.1002/14651858.MR000034.pub2.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sedgwick P. The ecological fallacy. BMJ. 2011;343. https://doi.org/10.1136/bmj.d4670.

Download references

Acknowledgements

We thank Xavier Moisset and Daniel Ontaneda for data sharing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Prosperini.

Ethics declarations

Ethical Statement

Not applicable.

Conflict of Interest

LP: consulting fees and/or speaker honoraria from Biogen, Celgene, Genzyme, Merck Serono, Novartis, and Teva; travel grants from Biogen, Genzyme, Novartis, and Teva; research grants from the Italian MS Society (Associazione Italiana Sclerosi Multipla) and Genzyme. CT: honoraria for speaking and travel grants from Biogen, Sanofi-Aventis, Merck Serono, Bayer-Schering, Teva, Genzyme, Almirall, and Novartis. SH: travel funding and/or speaker honoraria from Biogen, Roche, Genzyme, Novartis, CSL Behring. SR: personal fees and non-financial support from Biogen, Genzyme, Merck Serono, Novartis, and Teva. CG: fees as invited speaker or travel expenses for attending meeting from Biogen, Merck-Serono, Teva, Sanofi, Novartis, Genzyme.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 10.8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prosperini, L., Haggiag, S., Ruggieri, S. et al. Dimethyl Fumarate or Teriflunomide for Relapsing–Remitting Multiple Sclerosis: A Meta-analysis of Post-marketing Studies. Neurotherapeutics 20, 1275–1283 (2023). https://doi.org/10.1007/s13311-023-01416-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-023-01416-x

Keywords

Navigation